On Simulated Likelihood of Discretely Observed Diffusion Processes and Comparison to Closed-Form Approximation

نویسندگان

  • Osnat Stramer
  • Jun Yan
چکیده

This article focuses on two methods to approximate the loglikelihood function for univariate diffusions: 1) the simulation approach using a modified Brownian bridge as the importance sampler; and 2) the recent closed-form approach. For the case of constant volatility, we give a theoretical justification of the modified Brownian bridge sampler by showing that it is exactly a Brownian bridge. We also discuss computational issues in the simulation approach such as accelerating numerical variance stabilizing transformation, computing derivatives of the simulated loglikelihood, and choosing initial values of parameter estimates. The two approaches are compared in the context of financial applications with annualized parameter values, where the diffusion model has an unknown transition density and has no analytical variance stabilizing transformation. The closed-form expansion, particularly the second-order closed-form, is found to be computationally efficient and very accurate when the observation frequency is monthly or higher. It is more accurate in the center than in the tail of the transition density. The simulation approach combined with the variance stabilizing transformation is found to be more reliable than the closed-form approach when the observation frequency is lower. Both methods performs better when the volatility level is lower, but the simulation method is more robust to the volatility nature of the diffusion model. When applied to two well known datasets of daily observations, the two methods yield similar parameter estimates in both datasets but slightly different loglikelihood in the case of higher volatility. ∗Osnat Stramer is Associate Professor (E-mail: [email protected]) and Jun Yan is Assistant Professor

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Likelihood Estimation of Discretely Sampled Diffusions: a Closed-form Approximation Approach

When a continuous-time diffusion is observed only at discrete dates, in most cases the transition distribution and hence the likelihood function of the observations is not explicitly computable. Using Hermite polynomials, I construct an explicit sequence of closed-form functions and show that it converges to the true (but unknown) likelihood function. I document that the approximation is very a...

متن کامل

Quasi-maximum Likelihood Estimation of Discretely Observed Diffusions∗

This paper introduces quasi-maximum likelihood estimator for discretely observed diffusions when a closed-form transition density is unavailable. Higher order Wagner-Platen strong approximation is used to derive the first two conditional moments and a normal density function is used in estimation. Simulation study shows that the proposed estimator has high numerical precision and good numerical...

متن کامل

Globally Optimal Parameter Estimates for Non-linear Diffusions

This paper studies an approximation method for the log likelihood function of a non-linear diffusion process using the bridge of the diffusion. The main result (Theorem 1) shows that this approximation converges uniformly to the unknown likelihood function and can therefore be used efficiently with any algorithm for sampling from the law of the bridge. We also introduce an expected maximum like...

متن کامل

A Refinement to Äıt-Sahalia’s (2002) “Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-Form Approximation Approach”

This paper provides a closed-form density approximation when the underlying state variable is a one-dimensional diffusion. Building on Äıt-Sahalia (2002), we show that our refinement is applicable under a wide class of drift and diffusion functions. In addition, it facilitates the maximum likelihood estimation of discretely sampled diffusion models of short interest-rate or stock volatility wit...

متن کامل

A two-stage realized volatility approach to estimation of diffusion processes with discrete data

This paper motivates and introduces a two-stage method of estimating diffusion processes based on discretely sampled observations. In the first stage we make use of the feasible central limit theory for realized volatility, as developed in [Jacod, J., 1994. Limit of random measures associated with the increments of a Brownian semiartingal. Working paper, Laboratoire de Probabilities, Universite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006